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corresponding angular wavelength (nbo /s-n) of these modes is on the
order of the coupling hole size, which thus provides an extra energy
loss mechanism for such surfaces modes.

V. CONCLUSION

A study of open coaxial resonators was addressed giving emphasis
to the influence of the inner conductor geometry on the cavity
selective properties. Making use of a geometrical design criterion
for resonance of TE eigenmodes, a cavity was constructed and cold-

tested in the frequency range 11–14 GHz. In agreement with theory, it
was then demonstrated that some modes were effectively suppressed
when introducing a coaxial insert of suitable shape into the empty
cavity.
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Condition for Distortionless Transmission Line
with a Nonuniform Characteristic Impedance

Jonas Lundstedt

Abstract-The well-known condition for distortiordess signal propa-
gation on a dissipative transmission line with constant impedance is
generalized to the case of nonuniform impedance. The result is based
on a time-domain wave-splitting formulation of the Telegraphkt’s equa-
tions. It is shown that au appropriate choice of the resistance and
the conductance can eIiminate the distortion caused by the varying
characteristic impedance. A nonuniform transmission line that satisfies
the given conditiou is dktortionless in both directions, but reflectionless
for signals propagating in one direction orrly.

I. INTRODUCTION

O. Heaviside derived the well-known condition for distortionless
lines that states that the resistance and the conductance can be
matched to each other so that the distortion vanishes on transmission
lines with constant impedance. Matching of two lines with different
impedance with a transmission line taper is usually done with a

lossless line in order to preserve the energy of the signal at the cost
of a limited bandwidth. We present a condition “for distortionless
nonum~orm transmission lines. It is shown that it is possible to
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Fig. 1. The nonuniform and lossy transmission line between .z = O and
z = 1 is imbedded between two uniform and lossless transmission lines.

match the resistance and conductance to the slope of the impedance
so that the signal propagates undistorted with no reflections in one

direction and undistorted but with reflections in the other direction.
One consequence is that it is possible to design a perfect impedance
match if energy loss is acceptable. The idea to this distortionless

condition has evolved from the work in [1],

II. THE TELEGRAPHIST’SEQUATIONSAND THE WAVE-SPLITTING

Consider a nonuniform LCRG transmission line with length 1,
which is imbedded between two uniform and lossless LC transmission
lines. Incident signals from the left and right side of the uniform line
are denoted V’+ and V’ –, respectively. The signal generators are

assumed to be impedance matched. At z = O, a left-moving wave,

V~–, is due to transmission of the incident signal V’– and reflection
of V’+. The corresponding right-moving wave at z = 1 is denoted
V*+

For a TEM transmission line, the voltage V and the current 1
satisfy the Telegraphist’s equations

[1o V(z, t)
z 1(2-, t)

[

o –l?(r) – L(.) $——
–G(z) –C(z): o 1
[1.V(7+t) ‘“
1(x, t)

(1)

where L(x), C(T), R(z), and G(z) are respectively, the inductance,
capacitance, series resistance, and shunt conductance of the line. The
local characteristic impedance, Z(z), and local wavefront speed,
C(Z), are defined as

1 rL(x)z(z)= — —Y(x)= c(x)‘ c(x) =
& ‘ ‘2)

On a Iossless and homogeneous transmission line, the solution to (1)
can be decomposed into two parts, V+ and V –, which represent
right-moving and left-moving waves, respectively

{

‘v-+(?+t) = V+(t – x/c) = zI+(t – %/.)
(3)

V--- (Z, t) = V-(t + z/c) == –Zr (t+ z/c)

where 1+ and 1– are the currents that correspond to V+ and V–,
respectively. The relation between V+, V– and the total voltage and
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[

1 1 1[V+(x, t)
= Y(z) –Y(z) V-(%,t)[

V(x, t)
I(x, t)

[1=T-l(z) v+(x)~)
V–(z, t) “

(4)

(5)

Since Z(z) >0, the above transform between (V, 1) and (V+, V- )
is one-to-one, and it is thereby possible to use this transform also on

a general nonuniform line. Then V+ and V – are referred to as the
split voltages [2], [3]. Notice that the split voltages in (4) in general
only represent physical right- and left-moving waves on thdse parts

of a transmission line that have constant impedance and are lossless,
i.e., on nonuniform lines the split voltages do not satisfy the wave

equation independently.
The basic idea of wave-splitting is to find a transform from the

dependent variables (V, 1) to new dependent variables (V+, V-)
based on operators that factorize the whole or part of the wave
equation. Weston [4] gives a general treatment of wave-splitting and
factorization for a general wave equation. However, it is usually too

complicated to perform a full factorization of the wave equation, and

one instead chooses a transform that factorizes the wave equation in

the homogeneous media to the right and to the left of the nonuniform
slab that causes the scattering. This step is justified as long as the
transform is one-to-one, invertible, and factorizes the wave equation
at those points where the incident, reflected, and transmitted fields
are specified.

This means that the splitting can be chosen in several different
ways, for example in [5], [6], one finds different splittings used for the
reflected and transmitted fields from a point source above a lossy half
space, and in [3], the present splitting for an LCRG line is compared
to a previously considered splitting for a second order wave equation.

Thus, one normally chooses the splitting that factorizes the wave
equation at the boundaries and gives simple dynamical equations for

the split components. In the present case with lossless homogeneous
LC lines at both boundmies, the simplest transform is that in (4)
and (5). By transforming the problem from total voltages and total
currents to split voltages, one obtains a formalism that is effective
for large classes of transmission line direct and inverse propagation
problems [1], [3], [7], [8].

Substitution of (4) and (5) into (1) gives

(6)

where

I
a(x) = +(– GZ – RY+ Z.Y)

/j(z) = ;(–GZ + RY – ZzY)
(7)

~(~) = ~(+GZ – RY – ZIY)

b(r) = ~(+GZ + RY + Zrl’)

and Zx Y = (i2/~.E) in Z(%). Notice that, for an incident signal from
the left, it may seem strange that the dynamical equation (6) for V*
on a lossy uniform line states that there are interactions between V+
and V – everywhere along the line. This peculiarity arises because
V+ is not equal to the physical right-moving wave on the 10SSY

line, but V = V+ + V– is. However, V+ (1,t) and V- (O,t) at the
boundaries are equal to the physical transmitted and reflected signals.

Since the impedance is assumed to be continuous, we get from (4)

and continuity of total voltage and current that the split components
V* are continuous in z. Thus, the incident and transmitted waves
are given by the split voltages at z = 0,1

v’+(t) = v+(o, t) v’+(t) = V+(l, t)

v’-(t) =V-(l, t) v’-(t) =V-(o, t). (8)

III. DISTORTIONLESS TRANSMISSION L&rz

Assume that the incident waves V’+ (t) arrives at x = O and

V’– (t) arrives at z = 1 at the time t = O, i.e., for t <:(),
V+(O<z< l,t)=O, V+($>l, t)= O,and V-(z<O, t)=O.

By inspection of (6), one sees that the interactions between the
split voltages are through the factors /3(z) and -y(z). Therefore, let
~(x) be zero and calculate the split voltages as functions of V’+

and V ‘–. It is then convenient to introduce the wavefront travel Itime
from Z1 to X2

J‘2 dx’
T(zl, zz) = —

ml C(??) “
(9)

For the wavefront travel time coordinate, one has from (9)

1:7(0, Z) = —,
1

:T(z,l)=– —
c(x)

(10)
c(x)

where T(O, z) is the propagation time from the left boundmy of the
nonuniform line to x, and r (z, 1) is the travel time from the right
boundary to z. The partial derivatives in (6) can then be reformulated
as directional derivatives

f%v+[z, t + 7(0, z)] = CY(z)v+[z, t + 7(0, x)]
+ P(az)v-[z,t + T(o, z)] (11)

I%v-[z,t + 7-(X,1)]=C5(a)v-[z,t + 7(X,1)] (12)

where & = (8/Ox). Equations (11) and (12) express how V+ and
V-, respectively, varies in the direction of propagation in space-time
coordinates. Since T(Z) = O , the partial differential equation (F’DE)
(12) for V- is independent of V+, and hence, (12) is readily solved.
Knowing the solution for V–, one can then obtain the solution for

V+ from (11).
We reformulate the PDE for V – by including the integrating factor

e–(l, z)

&{ V-[z, t + ~(x, i)]e-(l, z)} = O (13)

‘-(z17z2)=exp(-r “z’’dZ’)’14)
Integration of (13) from z to 1, [7(1,1) = O and e- (z, 1) =
l/e-( l,z-)]

v- [z,t + T(z,2)]= e-(x, qvt-(t). (15)

This means that V– [x, t + T (z, 1)] equals the incident signal that
arrives from the right multiplied by the attenuation factor e – (a, /).
Next, the PDE(11) for V+ is reformulated as an ordimmy differential
equation (ODE) (i.e., t k treated as a parameter) by including the
integrating factor e+ (O,z)

~z{V+[z, t + T(O, z)]e+(O, z)}

= j3(z)V-[.z, t + 7(0, z)]e+(O, z) (16)
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e+(zl,z,)=exp (-~: ~(x,dx). (,7,

Substitution of (15) into (16) and integration from O to z gives

{ 1“V+[J7,t + 7(0, z)] = e+(.z, O) V’+(t)+

. e–(x’,l)e+(O, m’)h’
1

(18)

‘+ at z is composed of the undistortedIt is seen that the split voltage I

but attenuated wave V’+ that impinged from the left at z = O plus a

reflected and distorted part from the wave ~“t– that impinged from
the right at x = 1.

If we consider the case with incident waves from the left only, then
according to (15), V – is zero everywhere and V+ is an attenuated
but undistorted copy of the incident wave. Since the split voltage V+
is the physical right-moving wave at z > 1, the transmitted signal is
truly undistorted if V+ (t, t) is undistorted. It is interesting to note
that in this particular case with V’- = O and T(Z) = O,V+ and the
corresponding I + = V+ /2 satisfy the Telegraphist’s equations and

thus represent the physical right-moving wave on the nonuniform and
lossy line too. V ‘+ is given by (18)

V’+[t + 7(0,1)] =

{%exp(-i~ ) (19,
(GZ + RY) dx V’+(t).

A distortionless condition for a nonuniform transmission line is hence
-y(z) = o

-’-”==”%%’%
=0 (20)

As one can see, the generalized condition differs only by the term
2. Y from Heaviside’s condition, which is

“2– ’’=0. (21)

Notice that transmission through a nonuniform transmission line that
satisfies (20) is distortionless for both right- and left-moving waves,
but it is reflectionless only for right-moving waves, according to (15)
and (18). If the line is requitied to be distortionless and reflectionless
for waves moving in both directions, then the function /3(x) has to
be zero also. However, if both @ and T are required to be zero, the
only solution is that the transmission line has constant impedance.
In that case, (20) reduces to the usual distortionless condition for
transmission lines with constant impedance (21).

Similarly, the condition p (.z) = O gives a distortionless nonuni-
form transmission line which is reflectionless for left-moving waves
only.

IV. TRANSMITTED POWER ON A DISTORTIONLESS TRANSMISSION LINE

In this section, we illustrate in some simple examples how the
condhion (20) affects the power distribution along the line.

Consider first the case where V’– = O and assume for simplicity

that the losses are either due to the series resistance or the shunt
conductance. A tapered transmission line impedance transformer can
then be made distortion- and reflectionless by adding losses. Let
the impedance change from ZO to Zt at the interval from O to 1.
Then the slope of the chxactenstic impedance causes reflections,

but these reflections can be counteracted by either a resistive or

a conductive loss according to (20). A resistance should be used

to eliminate distortion where the impedance is decreasing, and

conductance eliminates the distortion where the impedance increases.
The values of R and G should be chosen according to

{

Z. <0: (R,”) = (–Zz, O)
Zx >0: (R, G) = (0, Zz’2).

(22)

The transmitted voltage is then

v’+ [t+ T(O>t)]
= e+(l. O)VL+(t)

(1
1

==exp *

)

(-GZ -R’+ 27’) dx V’+(t)
o

“[
1

Z. <0: exp

~1 )

Z.Y dr V’+(t)
o

= ; v’+(t)
1

2.>0: exp

U )

Odr V’+ (t)

= v’!(t).

(23)

The transmitted power, Pi, is naturally less than the incident power,

P,, due to the Iosses. The ratio Pt /P, is

P, (v’+)’/z,
P, = (v’+) ’/zll

{

21<20:
(v’+.”t/zo)2/z = :

— (v’+)’/z,—
(v2+)2/-z = ;

(24)

-Z’ > Zo’ (~-t+ )2/zo

The above equations are consistent with the special case where

the impedance changes abruptly from ZO to the smaller 21. The

disturbances are then eliminated by connecting a series resistance

R = ZO – Z1. Notice again that the impedance transformer is only

reflection- and distortionless for signals coming from the left.

Consider next a transmission line on which the distortion is due to

losses in R and G. Equation (20) states that distortion due to R and

G can be counteracted by an impedance taper. The impedance should

increase where the power loss in G dominates over power loss in R
and vice versa. Adjusting the impedance in this way increases the

power loss in the line, but decreases the dktortion. Take the stripline

as an example. Let the line be situated between z = O and z = 1

as in Fig. 1. Denote the values of Z, R and G at x = O by ZO, RO,
and Go, respectively, and find the function Z(X) that makes the line

distortionless. Assume that the thickness of the dielectric substrate is

fixed and that the characteristic impedance is controlled by changing

the width of stripline. Then the relations between Z, R, G and the

width w in a first order approximation are Z m l/w, R K I/w, and

G cx w. That is, the relation between R, G. and Z are

R(z) = RoYoZ(Z) and G(z) = GoZ,/Z(z). (25)

Equation (20) then becomes

z. (X)
— = GOZO– ROYO
z(x)

which has the solution

Z(x) = ZO exp [(GoZO – RoYo) . x].

(26)

(27)
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Hence, a distortionless stripline, which is reflectionless for right-
moving waves, should have an exponentially tapered characteristic
impedance that increases if GOZO > ROYOand decreases if GOZO <

ROYO. The power gain follows from a derivation that is similar to

that in (23) and (24), but both R and G are different from zero here.
The result is

Pt
~ = exp[–(GOZO + l?oYo) . 1]. (28)

z

V. DISCUSSION

A new condition for distortionless nonuniform transmission lines

has been developed that is a generalization of the Heaviside distor-

tionless condition. The derivation uses the wave-splitting technique,

a~d it is carried out in the time-domain. It is shown how the distortion

can be eliminated by matching the series resistance and shunt

conductance to the slope of the characteristic impedance. One should

notice that the model assumes that the transmission line parameters

are nondispersive. This means that if one cannot neglect dispersion,

the distortionJess condition can Only be made valid for a limited

band of frequencies. The conditions imposed on the transmission

line parameters are that R, G and the slope of Z are piece-wise
continuous.
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New Model of Coupled Transmission Lines

Adam Abramowicz

Abstract-The paper shows that an existing description of coupled
transmission lines is inconsistent and proposes a new model based truly
on the mntual conpling concept. In the existing formulation a series
electric coupling and parallel magnetic coupling are combined. In the new
formulation tke parallel electric and magnetic couplings as well as series
electric and magnetic couplings are used. Obtained model of coupled lines
has physical background related to tbc odd and even type of propagation
and agrees with the practical resnlts.

I. INTRODUCTION

When two unshielded uniform TEM transmission lines of the
same impedance Z are located in close proximity, they become
electromagnetically coupled via their associated electric and magoetic
fields. Two coupled lines can be excited in the two ways: “even
mode” excitation or “odd mode” excitation, i.e., in-phase or oppclsite-
phase, eqtm-amplitude excitations. The characteristic impedances
ZOe and ZOOassociated with these modes are defined as the input
impedance of an infinite leugth of one line, in the presence of (and
thus electromagnetically coupled to) the second line, also of infinite
length, when both are excited in the appropriate manner. A knowledge
of ZO~ and ZOOas functions of line parameters is essential to the
design of filters, directional couplers, and related devices, because
the coupling coefficient between lines can be calculated from them.
As it has been shown in [1] the coupling coefficient k between two
coupled lines when they are properly terminated can be calculated
from the following formula

(1)

Lines are properly terminated when the matching impedance .ZOis
taken as

(2)

The impedance ZO is always less thau the impedance of single line
Z (without coupling), thus four mentioned impedances satisfy the
following inequality:

zoo <20 < z < 20=. (3)

All four impedances can be simply expressed in terms of the
capacitance per unit length of the particular transmission line in
question: if this parameter is denoted by C (Flm), then

(4)

where: v is the velocity of light in free space and t, is the dielectric
constant of the medium filling the line.

It should be also noted that for the uniform coupled lines the
velocity of light is the same for odd or even excitations and equaJ to
the velocity of light in the single (uncoupled) line.
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