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corresponding angular wavelength (b, /m) of these modes is on the
order of the coupling hole size, which thus provides an extra energy
loss mechanism for such surfaces modes.

V. CONCLUSION

A study of open coaxial resonators was addressed giving emphasis
to the influence of the inner conductor geometry on the cavity
selective properties. Making use of a geometrical design criterion
for resonance of TE eigenmodes, a cavity was constructed and cold-
tested in the frequency range 11-14 GHz. In agreement with theory, it
was then demonstrated that some modes were effectively suppressed
when introducing a coaxial insert of suitable shape into the empty
cavity.
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Condition for Distortionless Transmission Line
with a Nonuniform Characteristic Impedance

Jonas Lundstedt

Abstract—The well-known condition for distortionless signal propa-
gation on a dissipative transmission line with constant impedance is
generalized to the case of nonuniform impedance. The result is based
on a time-domain wave-splitting formulation of the Telegraphist’s equa-
tions. It is shown that an appropriate choice of the resistance and
the conductance can eliminate the distortion caused by the varying
characteristic impedance. A nonuniform transmission line that satisfies
the given condition is distortionless in both directions, but reflectionless
for signals propagating in one direction only.

I. INTRODUCTION

O. Heaviside derived the well-known condition for distortionless
lines that states that the resistance and the conductance can be
matched to each other so that the distortion vanishes on transmission
lines with constant impedance. Matching of two lines with different
impedance with a transmission line taper is usually done with a
lossless line in order to preserve the energy of the signal at the cost
of a limited bandwidth. We present a condition “for distortionless
nonuniform transmission lines. It is shown that it is possible to
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Fig. 1. The nonuniform and lossy transmission line between x = 0 and
x = [ is imbedded between two uniform and lossless transmission lines.

match the resistance and conductance to the slope of the impedance
so that the signal propagates undistorted with no reflections in one
direction and undistorted but with reflections in the other direction.
One consequence is that it is possible to design a perfect impedance
match if energy loss is acceptable. The idea to this distortionless
condition has evolved from the work in [1].

II. THE TELEGRAPHIST'S EQUATIONS AND THE WAVE-SPLITTING

Consider a nonuniform LCRG transmission line with length [,
which is imbedded between two uniform and lossless LC transmission
lines. Incident signals from the left and right side of the uniform line
are denoted V*" and V', respectively. The signal generators are
assumed to be impedance matched. At z = 0, a left-moving wave,
V*~, is due to transmission of the incident signal V'~ and reflection
of V**. The corresponding right-moving wave at z = [ is denoted
Vit

For a TEM transmission line, the voltage V' and the current I
satisfy the Telegraphist’s equations

J [V{z,t)
oz {I(x, t) }
_ 0 —R(z) - L(x) %
—G(z) - C() % 0
Viz,t)
s g

where L(z), C{(x), R(z), and G(=) are respectively, the inductance,
capacitance, series resistance, and shunt conductance of the line. The
local characteristic impedance, Z(z), and local wavefront speed,
c(z), are defined as

_ 1 _ L@ N S
2o =5 =\ ew @ e @

On a lossless and homogeneous transmission line, the solution to (1)
can be decomposed into two parts, V¥ and V=, which represent
right-moving and left-moving waves, respectively

{V"“(w,t) =Vtit—z/e)=ZI(t —z/c)
Vi, )=V~ (t+azfc)=—-ZI (t+=z/c)

3

where It and I~ are the currents that correspond to V¥ and V',
respectively. The relation between ¥+, V'~ and the total voltage and
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current is

Vi)l _[1 Zx) ] [V(zt)
V(@.t)| 2|1 —Z(x)||I(z,t)

—T(a) [‘;((;”,’f))} 4
Vie,t)] [ 1 1 VT (x,t)
I(z,t) |~ |[V(2) =Y(2) {V‘(:c,t)J

+
ST () {“;_EZ: ?)] )

Since Z(z) > 0, the above transform between (V,T) and (V*,V ™)
is one-to-one, and it is thereby possible to use this transform also on
a general nonuniform line. Then V™ and V'~ are referred to as the
split voltages [2], [3]. Notice that the split voltages in (4) in general
only represent physical right- and left-moving waves on those parts
of a transmission line that have constant impedance and are lossless,
ie., on nonuniform lines the split voltages do not satisfy the wave
equation independently.

The basic idea of wave-splitting is to find a transform from the
dependent variables (V,I) to new dependent variables (V1,V ™)
based on operators that factorize the whole or part of the wave
equation. Weston [4] gives a general treatment of wave-splitting and
factorization for a general wave equation. However, it is usually too
complicated to perform a full factorization of the wave equation, and
one instead chooses a transform that factorizes the wave equation in
the homogeneous media to the right and to the left of the nonuniform
slab that causes the scattering. This step is justified as long as the
transform is one-to-one, invertible, and factorizes the wave equation
at those points where the incident, reflected, and transmitted fields
are specified.

This means that the splitting can be chosen in several different
ways, for example in [5], [6], one finds different splittings used for the
reflected and transmitted fields from a point source above a lossy half
space, and in [3], the present splitting for an LCRG line is compared
to a previously considered splitting for a second order wave equation.

Thus, one normally chooses the splitting that factorizes the wave
equation at the boundaries and gives simple dynamical equations for
the split components. In the present case with lossless homogeneous
LC lines at both boundaries, the simplest transform is that in (4)
and (5). By transforming the problem from total voltages and total
currents to split voltages, one obtains a formalism that is effective
for large classes of transmission line direct and inverse propagation
problems [1], [3], [7], [8].

Substitution of (4) and (5) into (1) gives

8 [VTx.t) 1 9 [ Vi)
oz V"(:c,t)] o(z) 3¢ ——V‘(m,t)}
_ [a(x) Alx) V+(m>] ©
Yz) b(=) | [V (=,8)
where
a(z) = L(-GZ — RY + 2,Y)
B(x) = L(~GZ + RY - Z,Y) -

v(z) = %(—i—GZ —RY - Z.Y)
§(x) = %(—l—GZ + RY + Z.Y")

and Z,Y = (9/8x) ln Z(z). Notice that, for an incident signal from
the left, it may seem strange that the dynamical equation (6) for vE
on a lossy uniform line states that there are interactions between V'
and V'~ everywhere along the line. This peculiarity arises because
VT is not equal to the physical right-moving wave on the lossy
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line, but V = V* 4V~ is. However, V*(I,t) and V™(0,¢) at the
boundaries are equal to the physical transmitted and reflected signals.

Since the impedance is assumed to be continuous, we get from (4)
and continuity of total voltage and current that the split components
V% are continuous in 2. Thus, the incident and transmitted waves
are given by the split voltages at x = 0,1

V@) =vT(0,1)
Vi) =V (L)

VE @) =Vr
ViT(t) =V7(0,0). ®)

III. DiSTORTIONLESS TRANSMISSION LINE

Assume that the incident waves V**(t) arrives at * = 0 and
V*=(t) arrives at * = [ at the time ¢ = 0, ie., for t < 0,
VEO<2<L,t)=0,V (@ >1,t)=0,and V™ (z < 0,t) = 0.

By inspection of (6), one sees that the interactions between the
split voltages are through the factors 3(x) and ~(z). Therefore, let
v(z) be zero and calculate the split voltages as functions of V**
and V'™ . It is then convenient to introduce the wavefront travel time
from z; to x2

T(l‘l,.’l,'g):/ ’ % . (9)

For the wavefront travel time coordinate, one has from (9)

9] 1

a
'8_; T(O,.’L’) = Z’(';,_y 8—1’ T($, l) = (10)

_
e(x)

where 7(0, z) is the propagation time from the left boundary of the
nonuniform line to x, and 7(x,!) is the travel time from the right
boundary to z. The partial derivatives in (6) can then be reformulated
as directional derivatives

8V [z,t + 7(0,2)] = a(z)V [z, t + 7(0,2)]
+ B(2)V 7 [z, t + 7(0,2)]
axv—[x, t+ T(x, l)] = 6(m)v_[ma t+ T(w5 l)]

an
12

where 9, = (8/0z). Equations (11) and (12) express how V+ and
V'™, respectively, varies in the direction of propagation in space-time
coordinates. Since vy(z) = 0, the partial differential equation (PDE)
(12) for V'~ is independent of V'*, and hence, (12) is readily solved.
Knowing the solution for ¥, one can then obtain the solution for
V* from (11).

We reformulate the PDE for V'~ by including the integrating factor
e (l,z)

AV [z, t + 7(z, D] (L)} =0 3)

z2

e (w1, @) = exp <—/ 8(z") dm'). (14
z1

Integration of (13) from « to I, [7({,1) = 0 and e (z,l) =

/e~ ()]

Viz, t+ 1(z, )] = e (2, HhV* ™ (2). 1s)y

This means that V [z, + 7(x,!)] equals the incident signal that
arrives from the right multiplied by the attenuation factor e~ (x,1).
Next, the PDE (11) for V' is reformulated as an ordinary differential
equation (ODE) (i.e., t is treated as a parameter) by including the
integrating factor e*(0,z)

61:{V+ [-’L', t+ T(O, w)]e+ (07 .’B)}

= B(x)V [z, t + 7(0,2)]e* (0, ) (16)
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a(z') dx'). )

23
e+(:c1,.172) = exp (—/
LSt

Substitution of (15) into (16) and integration from 0 to = gives

Vot + (0, 2)] = ez, O){V“L(t) + /
3
. ﬁ(w')V’_[t +27(0,2") = 7(0,1)]

. e—(x',z)e+(o,az’)dm’}. (18)
It is seen that the split voltage V' at « is composed of the undistorted
but attenuated wave V*" that impinged from the left at = 0 plus a
reflected and distorted part from the wave V*~ that impinged from
the right at = = I.

If we consider the case with incident waves from the left only, then
according to (15), V™ is zero everywhere and V¥ is an attenuated
but undistorted copy of the incident wave. Since the split voltage V'
is the physical right-moving wave at x > [, the transmitted signal is
truly undistorted if V" (I,¢) is undistorted. It is interesting to note
that in this particular case with V*~ = 0 and v(z) = 0, V" and the
corresponding I = VT /Z satisfy the Telegraphist’s equations and
thus represent the physical right-moving wave on the nonuniform and
lossy line too. V't is given by (18)

VIt +r(0,1)] =

Z(l) exp (—% /l (GZ + RY) d:c) VH-(t)'

Z(0) (19)

A distortionless condition for a nonuniform transmission line is hence

v(z) =
L ¢ L, C,
GZ‘RY—ZIY_G,/a—R,/I_ﬁ+2_5_
=0

As one can see, the generalized condition differs only by the term
Z.Y from Heaviside’s condition, which is

20)

GZ — RY =0. @2n
Notice that transmission through a nonuniform transmission line that
satisfies (20) is distortionless for both right- and left-moving waves,
but it is reflectionless only for right-moving waves, according to (15)
and (18). If the line is required to be distortionless and reflectionless
for waves moving in both directions, then the function B(z) has to
be zero also. However, if both 8 and ~ are required to be zero, the
only solution is that the transmission line has constant impedance.
In that case, (20) reduces to the usual distortionless condition for
transmission lines with constant impedance (21).

Similarly, the condition 3(x) = O gives a distortionless nonuni-
form transmission line which is reflectionless for left-moving waves
only.

IV. TRANSMITTED POWER ON A DISTORTIONLESS TRANSMISSION LINE

In this section, we illustrate in some simple examples how the
condition (20) affects the power distribution along the line.

Consider first the case where V'~ = 0 and assume for simplicity
that the losses are either due to the series resistance or the shunt
conductance. A tapered transmission line impedance transformer can
then be made distortion- and reflectionless by adding losses. Let
the impedance change from Zp to Z; at the interval from O to .
Then the slope of the characteristic impedance causes reflections,
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but these reflections can be counteracted by either a resistive or
a conductive loss according to (20). A resistance should be used
to eliminate distortion where the impedance is decreasing, and
conductance eliminates the distortion where the impedance increases.
The values of R and G should be chosen according to

Zy <0
Z; > 0:

The transmifted voltage is then

(R,G) = (0, Z,Y?). (22)

Ve + 7(0,1)]
=t L0V (1)

!
= exp (1 /( ~GZ-RY + 7, Y)dx)V‘Jr(t)

Zy < 0: exp g/ Zde V()

Zy > 0: exp (/ 0dx> V' (t)
= V’E)"(t).

The transmitted power, P, is naturally less than the incident power,
P,, due to the losses. The ratio P;/P, is

P _ (VY2 /z

P, (V)2 /2

(V' 2i/Z6) )2 _ Z1
(Vit)2/Zy Zo

V' Z  Zo

Iy > 7yt et = —
1> Lo (V)2 /2, Z

Z1 < Zy:
(24

The above equations are consistent with the special case where
the impedance changes abruptly from Zy to the smaller Z;. The
disturbances are then eliminated by connecting a series resistance
R = Zy — Z;. Notice again that the impedance transformer is only
reflection- and distortionless for signals coming from the left.

Consider next a transmission line on which the distortion is due to
losses in R and G. Equation (20) states that distortion due to I and
G can be counteracted by an impedance taper. The impedance should
increase where the power loss in G dominates over power loss in R
and vice versa. Adjusting the impedance in this way increases the
power loss in the line, but decreases the distortion. Take the stripline
as an example. Let the line be situated between z = 0 and « = [
as in Fig. 1. Denote the values of Z, R and G at x = 0 by Zo, Ro,
and Gl, respectively, and find the function Z(z) that makes the line
distortionless. Assume that the thickness of the dielectric substrate is
fixed and that the characteristic impedance is controlled by changing
the width of stripline. Then the relations between Z, R, G and the
width w in a first order approximation are Z x 1/w, R x 1/w, and
G « w. That is, the relation between R, . and Z are

R(z) = RoYoZ(x) and G(z)= GoZo/Z(z). 25)
Eguation (20) then becomes
Z,
Z((;)) = GoZo — RoYs (26)
which has the solution
Z(x) = Zo exp|(GoZy — RoYo) - ). 2N
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Hence, a distortionless stripline, which is reflectionless for right-
moving waves, should have an exponentially tapered characteristic
impedance that increases if GoZo > RoYp and decreases if GoZo <
RoYs. The power gain follows from a derivation that is similar to
that in (23) and (24), but both R and G are different from zero here.
The result is

I3

P,
B = XD [—(GoZo + RoYo) - 1].

7

(2%)

V. DISCUSSION

A new condition for distortionless nonuniform transmission lines
has been developed that is a generalization of the Heaviside distor-
tionless condition. The derivation uses the wave-splitting technique,
and it is carried out in the time-domain. It is shown how the distortion
can be eliminated by matching the series resistance and shunt
conductance to the slope of the characteristic impedance. One should
notice that the model assumes that the transmission line parameters
are nondispersive. This means that if one cannot neglect dispersion,
the distortionless condition can only be made valid for a limited
band of frequencies. The conditions imposed on the transmission
line parameters are that R, G and the slope of Z are piece-wise
continuous.
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New Model of Coupled Transmission Lines

Adam Abramowicz

Abstract—The paper shows that an existing description of coupled
transmission lines is inconsistent and proposes a new model based truly
on the mutnal coupling concept. In the existing formulation a series
electric coupling and parallel magnetic coupling are combined. In the new
formulation the parallel electric and magnetic couplings as well as series
electric and magnetic couplings are used. Obtained model of coupled lines
has physical background related to the odd and even type of propagation
and agrees with the practical results.

1. INTRODUCTION

When two unshielded uniform TEM transmission lines of the
same impedance Z are located in close proximity, they become
electromagnetically coupled via their associated electric and magoetic
fields. Two coupled lines can be excited in the two ways: “even
mode” excitation or “odd mode” excitation, i.e., in-phase or opposite-
phase, equal-amplitude excitations. The characteristic impedances
Zye and Zp, associated with these modes are defined as the input
impedance of an infinite length of one line, in the presence of (and
thus electromagnetically coupled to) the second line, also of infinite
length, when both are excited in the appropriate manner. A knowledge
of Zo. and Zo, as functions of line parameters is essential to the
design of filters, directional couplers, and related devices, because
the coupling coefficient between lines can be calculated from them.
As it has been shown in [1] the coupling coefficient k between two
coupled lines when they are properly terminated can be calculated
from the following formula:

ZOe - Z()o

k= o0——F0—.
ZOe+Z00

M
Lines are properly terminated when the matching impedance Zo is
taken as

Zo = VZoeZoo- )

The impedance Zy is always less than the impedance of single line
Z (without coupling), thus four mentioned impedances satisfy the
following inequality:

Zoo < Zo < Z < Zge. (3)

All four impedances can be simply expressed in terms of the
capacitance per unit length of the particular transmission line in
question: if this parameter is denoted by C' (F/m), then
1
Zrfer = — 4
vC @
where: v is the velocity of light in free space and £, is the dielectric
constant of the medium filling the line.
It should be also noted that for the uniform coupled lines the
velocity of light is the same for odd or even excitations and equal to
the velocity of light in the single (uncoupled) line.
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